开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

心有自然 · 2022年08月29日

图片总是没有啊

NO.PZ2022071202000057

问题如下:

Question
The following is an excerpt from the cumulative distribution function for the standard normal random variable table:

Cumulative Probabilities for a Standard Normal Distribution
P(Zx) = N(x) for x ≥ 0 or P(Zz) = N(z) for z ≥ 0

A variable is normally distributed with a mean of 2.00 and a variance of 16.00. Using the excerpt, the probability of observing a value of 7.40 or less is closest to:

选项:

A.63.3%. B.91.2%. C.96.8%.

解释:

Solution

B is correct. First the outcome of interest, 7.40, is standardized for the given normal distribution:

Z=(X-μ/σ)=(7.40-2.00)/4=1.35?=1.35

Then, the given table of values is used to find the probability of a Z-value being less than or equal to 1.35 standard deviations above the mean. The value is P(Z ≤ 1.35) = 0.9115 = 91.2%.

A is incorrect; it divides 5.4 (that is the result of 7.4 - 2) by the variance, 16, and uses 0.34 as the z-value: P(Z≤0.34) = 0.6331 = 63.3%.

C is incorrect; it divides the value, 7.4, by the standard deviation, 4, and uses 1.85 as the Z-value: P(Z ≤ 1.85) = 0.9678 = 96.8%.

没有图加载

1 个答案

星星_品职助教 · 2022年08月29日

同学你好,

这道题已经修复。

PS,有问必答针对的是题目解答上的问题。关于加载等问题可联系辅导员解决。

  • 1

    回答
  • 0

    关注
  • 252

    浏览
相关问题