开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Vme50 · 2022年08月20日

老师,请问题解中的Z=3是怎么来的?

NO.PZ2022071202000060

问题如下:

Question An analyst determines that approximately 99% of the observations of daily sales for a company are within the interval from $230,000 to $480,000 and that daily sales for the company are normally distributed. If approximately 99% of all the observations fall in the interval μ ± 3σ, then using the approximate z-value rather than the precise table, the standard deviation of daily sales for the company is closest to:

选项:

A.$41,667.00 B.$62,500.00 C.$83,333.00

解释:

Solution

A is correct. Given that sales are normally distributed, the mean is centered in the interval.

Mean = ($230,000 + $480,000)/2 = $355,000

99 percent of observations under a normal distribution will be approximately plus/minus three standard deviations. Then, use the following formula:

Z = (X - μ)/σ

or, by rearranging:

σ = (X - μ)/Z

where

Z = 3

X = $480,000

μ = $355,000

Thus, ($480,000 - $355,000)/3.0 = $41,667.



1 个答案
已采纳答案

星星_品职助教 · 2022年08月20日

同学你好,

Z=3源于“ If approximately 99% of all the observations fall in the interval μ ± 3σ”中的3。

但这道题从这个角度去想就非常麻烦,可从下面的步骤直接解题:

1)已知置信区间的两个端点为230,000 to 480,000,据此算出μ= (230,000 + 480,000)/2 = 355,000,本步和答案解析的第一步是一致的。

2)根据μ+3σ=480,000,代入μ=355,000,直接解得σ=41,666.67,解题完毕。

--------

上面第2)步中,将μ+3σ=480,000移项后可得(48,000-μ)/σ=3。

等式左侧是对于48,000的标准化,也就是Z,这个等式就是答案解析中的Z=3。但是,这步实际没有必要去专门弄出一个Z来,直接解出σ就可以了。


  • 1

    回答
  • 0

    关注
  • 354

    浏览
相关问题