开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

youtkr · 2022年08月09日

第一步算出来的为什么就直接是2时刻末的数字而不是3时刻末的数字

* 问题详情,请 查看题干

NO.PZ201702190300000308

问题如下:

Based on Exhibit 2 and the parameters used by Sousa, the value of the interest rate option is closest to:

选项:

A.

5,251.

B.

6,236.

C.

6,429.

解释:

C is correct.

Using the expectations approach, per 1 of notional value, the values of the call option at Time Step 2 are

c++ = Max(0,5++ - X) = Max(0,0.050 - 0.0275) = 0.0225.

c+- = Max(0,5+- - X) = Max(0,0.030 - 0.0275) = 0.0025.

c-- = Max(0,5- - - X) = Max(0,0.010 - 0.0275) = 0.

At Time Step 1, the call values are

c+ = PV[nc++ + (1 - π)c+-].

c+= 0.961538[0.50(0.0225) + (1 - 0.50)(0.0025)] = 0.012019.

c- = PV[nc+- + (1 - π)c--].

c- = 0.980392[0.50(0.0025) + (1 - 0.50)(0)] = 0.001225.

At Time Step 0, the call option value is

c = PV[πc+ + (1 - π)c-].

c = 0.970874[0.50(0.012019) + (1 - 0.50)(0.001225)] = 0.006429.

The value of the call option is this amount multiplied by the notional value, or 0.006429 x 1,000,000 = 6,429.

中文解析:

本题考察的是利率二叉树,需要注意两点:一是利率二叉树下向上和向下的概率是已知且确定的,都为0.5;二是在折现的时候要注意使用的是节点利率,例如把c++ c+-向前折现求c+时,注意应该使用的是iu

如题

1 个答案

Lucky_品职助教 · 2022年08月09日

嗨,努力学习的PZer你好:


利息一般是在一个期限开始的时候确定,在一个期限结束的时候才会发生支付,因此我们在2这个时点,就要确定后一个期限的利率,在2时点首先判断是否行权,如果行权,算出2时点的call option value,再向前折现得出0时点的call option value。之所以是2时刻末的数字,是因为2-3时期的利率是在这个时点就定下来的,要在这个时点判断是否行权~

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 1

    回答
  • 0

    关注
  • 443

    浏览
相关问题

NO.PZ201702190300000308 问题如下 Baseon Exhibit 2 anthe parameters useSousthe value of the interest rate option is closest to: A.5,251. B.6,236. C.6,429. C is correct. Using the expectations approach, per 1 of notionvalue, the values of the call option Time Step 2 arec++ = Max(0,5++ - X) = Max(0,0.050 - 0.0275) = 0.0225. c+- = Max(0,5+- - X) = Max(0,0.030 - 0.0275) = 0.0025.c-- = Max(0,5- - - X) = Max(0,0.010 - 0.0275) = 0.Time Step 1, the call values are = PV[nc++ + (1 - π)c+-].c+= 0.961538[0.50(0.0225) + (1 - 0.50)(0.0025)] = 0.012019.= PV[nc+- + (1 - π)c--].= 0.980392[0.50(0.0025) + (1 - 0.50)(0)] = 0.001225.Time Step 0, the call option value isc = PV[π+ (1 - π)c-].c = 0.970874[0.50(0.012019) + (1 - 0.50)(0.001225)] = 0.006429.The value of the call option is this amount multipliethe notionvalue, or 0.006429 x 1,000,000 = 6,429.中文解析本题考察的是利率二叉树,需要注意两点一是利率二叉树下向上和向下的概率是已知且确定的,都为0.5;二是在折现的时候要注意使用的是节点利率,例如把c++ c+-向前折现求c+时,注意应该使用的是iu。 c++ = Max(0,5++ - X) = Max(0,0.050 - 0.0275) = 0.0225这里的c++ 为啥没有除以1.05呢?第三年初确定的收益率5%,决定第三年的利息,5%-2.75%的收益应该折现到第三年初,再按 4%折现到第二年年初,再按3%折现到第一年年初?

2023-05-06 18:51 1 · 回答

NO.PZ201702190300000308 问题如下 Baseon Exhibit 2 anthe parameters useSousthe value of the interest rate option is closest to: A.5,251. B.6,236. C.6,429. C is correct. Using the expectations approach, per 1 of notionvalue, the values of the call option Time Step 2 arec++ = Max(0,5++ - X) = Max(0,0.050 - 0.0275) = 0.0225. c+- = Max(0,5+- - X) = Max(0,0.030 - 0.0275) = 0.0025.c-- = Max(0,5- - - X) = Max(0,0.010 - 0.0275) = 0.Time Step 1, the call values are = PV[nc++ + (1 - π)c+-].c+= 0.961538[0.50(0.0225) + (1 - 0.50)(0.0025)] = 0.012019.= PV[nc+- + (1 - π)c--].= 0.980392[0.50(0.0025) + (1 - 0.50)(0)] = 0.001225.Time Step 0, the call option value isc = PV[π+ (1 - π)c-].c = 0.970874[0.50(0.012019) + (1 - 0.50)(0.001225)] = 0.006429.The value of the call option is this amount multipliethe notionvalue, or 0.006429 x 1,000,000 = 6,429.中文解析本题考察的是利率二叉树,需要注意两点一是利率二叉树下向上和向下的概率是已知且确定的,都为0.5;二是在折现的时候要注意使用的是节点利率,例如把c++ c+-向前折现求c+时,注意应该使用的是iu。 我看这道大题前面计算european和americoption的时候,例如p++ = Max(0,X - u2S) = Max[0,40 - 1.3002(38)] = Max(0,40 - 64.22) = 0.都乘以的是probability的平方,想问下计算Interest rate option为什么在t=2时刻也只是乘以0.5,而不是0.5^2

2022-10-11 20:42 1 · 回答

NO.PZ201702190300000308 为什么这个二叉树不是用无风险利率折现呢,interest rate不是unrlying asset 吗

2022-01-25 17:23 1 · 回答

NO.PZ201702190300000308 画树算出来等于0.01178, 怎么得到答案

2021-11-26 10:34 2 · 回答