开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Cooljas · 2022年07月28日

可以详细解答下解题步骤吗?没太看懂答案...

NO.PZ2020011101000020

问题如下:

Suppose an hourly time series has a calendar effect where the hour of the day matters. How would the dummy variable approach be implemented to capture this calendar effect? How could differencing be used instead to remove the seasonality?

选项:

解释:

Let s = 24 represent the hour of the day in military time (e.g. 13 = 1 p.m.). Then Yt=g(t)+γ1I1t+...+γ23I23t+ϵtY_t = g(t) + \gamma_1I_{1t} + ... + \gamma_{23}I_{23t} + \epsilon_t.

Differencing this series can be achieved by looking at observation 24 periods (hours) apart from each other (the following presumes that the error terms are iid and normal):

Yt+24Yt=g(t+24)g(t)+ϵt+24ϵtY_{t + 24} - Y_t = g(t + 24) - g(t) + \epsilon_{t + 24} - \epsilon_t

Once the deterministic time trend is removed the remaining is a covariance-stationary MA(1) process.



1 个答案

DD仔_品职助教 · 2022年07月29日

嗨,从没放弃的小努力你好:


同学你好,

这道题是老师上课讲过的例题,一模一样的,在讲义的302页,具体是seasonality这个视频1.5倍速17分钟开始。

这里建议同学回去听一下老师的讲解,肯定比我打字解释的清楚。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 1

    回答
  • 0

    关注
  • 507

    浏览
相关问题

NO.PZ2020011101000020 问题如下 Suppose hourly time series ha calenr effewhere the hour of the y matters. How woulthe mmy variable approaimplementeto capture this calenr effect? How coulfferencing useinsteto remove the seasonality? Let s = 24 represent the hour of the y in military time (e.g. 13 = 1 p.m.). Then Yt=g(t)+γ1I1t+...+γ23I23t+ϵtY_t = g(t) + \gamma_1I_{1t} + ... + \gamma_{23}I_{23t} + \epsilon_tYt​=g(t)+γ1​I1t​+...+γ23​I23t​+ϵt​.fferencing this series cachievelooking observation 24 perio (hours) apart from eaother (the following presumes ththe error terms are iiannormal):Yt+24−Yt=g(t+24)−g(t)+ϵt+24−ϵtY_{t + 24} - Y_t = g(t + 24) - g(t) + \epsilon_{t + 24} - \epsilon_tYt+24​−Yt​=g(t+24)−g(t)+ϵt+24​−ϵt​Onthe terministic time trenis removethe remaining is a covariance-stationary MA(1) process. 这道题不是非平稳时间序列么,应该是下一章的练习题把

2024-06-03 15:32 1 · 回答

NO.PZ2020011101000020 问题如下 Suppose hourly time series ha calenr effewhere the hour of the y matters. How woulthe mmy variable approaimplementeto capture this calenr effect? How coulfferencing useinsteto remove the seasonality? Let s = 24 represent the hour of the y in military time (e.g. 13 = 1 p.m.). Then Yt=g(t)+γ1I1t+...+γ23I23t+ϵtY_t = g(t) + \gamma_1I_{1t} + ... + \gamma_{23}I_{23t} + \epsilon_tYt​=g(t)+γ1​I1t​+...+γ23​I23t​+ϵt​.fferencing this series cachievelooking observation 24 perio (hours) apart from eaother (the following presumes ththe error terms are iiannormal):Yt+24−Yt=g(t+24)−g(t)+ϵt+24−ϵtY_{t + 24} - Y_t = g(t + 24) - g(t) + \epsilon_{t + 24} - \epsilon_tYt+24​−Yt​=g(t+24)−g(t)+ϵt+24​−ϵt​Onthe terministic time trenis removethe remaining is a covariance-stationary MA(1) process. g(t)是什么东西?讲义里哪里提到过?

2023-06-11 11:38 1 · 回答

NO.PZ202001110100002024小时对应23个哑变量,第24个Yt是前23个哑变量为0。那么是不是要从第25小时开始下一个循环,对应第1小时呢?

2022-01-28 17:18 1 · 回答

Yt+24那条式子哪来的, 为什么remove后等于M?谢谢

2020-05-31 06:35 1 · 回答