开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

婉婷 · 2022年06月05日

为什么不用(1+6%/12)^1的EAR公式计算有效年利率呢,不是每月复利一次吗

NO.PZ2017092702000012

问题如下:

A sweepstakes winner may select either a perpetuity of £2,000 a month beginning with the first payment in one month or an immediate lump sum payment of £350,000. If the annual discount rate is 6% compounded monthly, the present value of the perpetuity is:

选项:

A.

less than the lump sum.

B.

equal to the lump sum.

C.

greater than the lump sum.

解释:

C is correct.

As shown below, the present value (PV) of a £2,000 per month perpetuity is worth approximately £400,000 at a 6% annual rate compounded monthly. Thus, the present value of the annuity (A) is worth more than the lump sum offer. A = £2,000 r = (6%/12) = 0.005 PV = (A/r) PV = (£2,000/0.005) PV = £400,000

the present value of the“perpetuity”--永续年金,带入永续年金的公式 PV=A/r即可:

A=2,000, r=(6%/12)=0.005, PV=A/r=400,000

为什么不用(1+6%/12)^1的EAR公式计算有效年利率呢,不是每月复利一次吗,然后再用这个利率算年金的PV

3 个答案

张小橙🍊 · 2022年08月15日

因为EAR是折算后的年化有效利率,折算后不能再复利了。但永续年金公式本质意义在于每月现金流用折算前的discount rate 往前折算现值,所以并不用把题目给定的利率再换算成有效利率

袁园_品职助教 · 2022年06月06日

嗨,爱思考的PZer你好:


是啊,年金的问题,就是年金的公式求PV哦,这个就是考点,永续年金的PV=A/r其实就是根据(1+6%/12)推导出来的。只不过这个折现后面是无穷无尽的,然后再通过(1+r)相乘的变形后相减直接推导出来的。

你说的EAR算,你是想怎么算呢,就直接换算成1年,然后再除一年吗?

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

袁园_品职助教 · 2022年06月05日

嗨,从没放弃的小努力你好:


不可以,这道题给了条件,这个就是a perpetuity of £2,000,永续年金就要按照永续年金的公式来算,因为你自己虽然没有持有到永久,但是永续年金现在的定价必须要反应这个永续的含义,所以必须用永续年金的公式。

----------------------------------------------
加油吧,让我们一起遇见更好的自己!

婉婷 · 2022年06月05日

没明白,是年金问题,就不需要用到EAR的算法吗?

  • 3

    回答
  • 0

    关注
  • 491

    浏览
相关问题

NO.PZ2017092702000012 问题如下 A sweepstakes winner mseleeither a perpetuity of £2,000 a month beginning with the first payment in one month or immeate lump sum payment of £350,000. If the annuscount rate is 6% compounmonthly, the present value of the perpetuity is: A.less ththe lump sum. B.equto the lump sum. C.greater ththe lump sum. C is correct.shown below, the present value (PV) of a £2,000 per month perpetuity is worth approximately £400,000 a 6% annurate compounmonthly. Thus, the present value of the annuity (is worth more ththe lump sum offer. A = £2,000 r = (6%/12) = 0.005 PV = (A/r) PV = (£2,000/0.005) PV = £400,000the present value of the“perpetuity”--永续年金,带入永续年金的公式 PV=A/r即可A=2,000, r=(6%/12)=0.005, PV=A/r=400,000

2023-07-19 00:03 2 · 回答

NO.PZ2017092702000012 问题如下 A sweepstakes winner mseleeither a perpetuity of £2,000 a month beginning with the first payment in one month or immeate lump sum payment of £350,000. If the annuscount rate is 6% compounmonthly, the present value of the perpetuity is: A.less ththe lump sum. B.equto the lump sum. C.greater ththe lump sum. C is correct.shown below, the present value (PV) of a £2,000 per month perpetuity is worth approximately £400,000 a 6% annurate compounmonthly. Thus, the present value of the annuity (is worth more ththe lump sum offer. A = £2,000 r = (6%/12) = 0.005 PV = (A/r) PV = (£2,000/0.005) PV = £400,000the present value of the“perpetuity”--永续年金,带入永续年金的公式 PV=A/r即可A=2,000, r=(6%/12)=0.005, PV=A/r=400,000 6% compounmonthly每期是一个月,利率是每月复利。为啥需要除以12呢

2022-12-16 18:31 1 · 回答

NO.PZ2017092702000012问题如下A sweepstakes winner mseleeither a perpetuity of £2,000 a month beginning with the first payment in one month or immeate lump sum payment of £350,000. If the annuscount rate is 6% compounmonthly, the present value of the perpetuity is:A.less ththe lump sum.B.equto the lump sum.C.greater ththe lump sum. C is correct.shown below, the present value (PV) of a £2,000 per month perpetuity is worth approximately £400,000 a 6% annurate compounmonthly. Thus, the present value of the annuity (is worth more ththe lump sum offer. A = £2,000 r = (6%/12) = 0.005 PV = (A/r) PV = (£2,000/0.005) PV = £400,000the present value of the“perpetuity”--永续年金,带入永续年金的公式 PV=A/r即可A=2,000, r=(6%/12)=0.005, PV=A/r=400,000 英文版的没看懂,想问下题目的中文翻译和中文解答

2022-12-08 23:02 1 · 回答

NO.PZ2017092702000012问题如下A sweepstakes winner mseleeither a perpetuity of £2,000 a month beginning with the first payment in one month or immeate lump sum payment of £350,000. If the annuscount rate is 6% compounmonthly, the present value of the perpetuity is:A.less ththe lump sum.B.equto the lump sum.C.greater ththe lump sum. C is correct.shown below, the present value (PV) of a £2,000 per month perpetuity is worth approximately £400,000 a 6% annurate compounmonthly. Thus, the present value of the annuity (is worth more ththe lump sum offer. A = £2,000 r = (6%/12) = 0.005 PV = (A/r) PV = (£2,000/0.005) PV = £400,000the present value of the“perpetuity”--永续年金,带入永续年金的公式 PV=A/r即可A=2,000, r=(6%/12)=0.005, PV=A/r=400,000 请问什么时候需要从T1折现到T0,什么时候不需要?

2022-04-18 17:23 1 · 回答