开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Emmmmmmmua · 2022年05月27日

MSE 的 penalize factor

NO.PZ2018122801000073

问题如下:

Richard Frank, FRM, is running a regression model to forecast in-sample data. He is concerned about data mining and over-fitting the data. Which of the following criteria provides the highest penalty factor based on degrees of freedom?

选项:

A.

Mean squared error (MSE)

B.

Unbiased mean squared error (s2)

C.

Akaike information criterion (AIC)

D.

Schwarz information criterion (SIC)

解释:

D is correct.

考点 Selecting Forecasting Models

解析 The Schwarz information criterion (SIC) has the highest penalty factor. The mean squared error (MSE) does not penalize the regression model based on the increased number of parameters, k. The penalty factors for s2, AIC, and SIC are (T/T  k), e(2k/T), and T(k/T), respectively. Thus, SIC has the greatest penalty factor.

答案说:The mean squared error (MSE) does not penalize the regression model

后面又说:The penalty factors for s2 are (T/T  k)


那到底有没有惩罚呢

3 个答案
已采纳答案

DD仔_品职助教 · 2022年05月30日

嗨,努力学习的PZer你好:


Mean squared error 和Unbiased mean squared error都是来衡量模型拟合度的,增加模型的解释变量MSE会一直上升,没有penalty factor,这样容易出现overfitting的问题。

而给MSE增加了penaltyfactor之后的衡量标准就是Unbiased mean squared error,可以很好的解决overfitting的问题。


----------------------------------------------
努力的时光都是限量版,加油!

DD仔_品职助教 · 2022年05月30日

嗨,努力学习的PZer你好:


Mean squared error 和Unbiased mean squared error都是来衡量模型拟合度的,增加模型的解释变量MSE会一直上升,没有penalty factor,这样容易出现overfitting的问题。

而给MSE增加了penaltyfactor之后的衡量标准就是Unbiased mean squared error,可以很好的解决overfitting的问题。


----------------------------------------------
加油吧,让我们一起遇见更好的自己!

DD仔_品职助教 · 2022年05月28日

嗨,努力学习的PZer你好:


没有,答案后面说的是对于S2,AIC,SIC这三个的penalty factor分别是什么,没有MSE的。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

Emmmmmmmua · 2022年05月29日

S2和MSE什么区别呢

  • 3

    回答
  • 0

    关注
  • 367

    浏览
相关问题

NO.PZ2018122801000073问题如下 Richard Frank, FRM, is running a regression mol to forecast in-sample tHe is concerneabout ta mining anover-fitting the tWhiof the following criteria provis the highest penalty factor baseon grees of freem? Mean squareerror (MSE) Unbiased mesquareerror (s2) Akaike information criterion (AI Schwarz information criterion (SI is correct. 考点 : Selecting Forecasting Mols 解析 : The Schwarz information criterion (SIhthe highest penalty factor. The mesquared error (MSE) es not penalize the regression mol baseon the increased number of parameters, k. The penalty factors for s2, AIand SIC are (T/T –  k), e(2k/T), anT(k/T), respectively. Thus, SIC hthe greatest penalty factor. 这道题什么意思啊??

2024-05-07 19:46 2 · 回答

NO.PZ2018122801000073 问题如下 Richard Frank, FRM, is running a regression mol to forecast in-sample tHe is concerneabout ta mining anover-fitting the tWhiof the following criteria provis the highest penalty factor baseon grees of freem? Mean squareerror (MSE) Unbiased mesquareerror (s2) Akaike information criterion (AI Schwarz information criterion (SI is correct. 考点 : Selecting Forecasting Mols 解析 : The Schwarz information criterion (SIhthe highest penalty factor. The mesquared error (MSE) es not penalize the regression mol baseon the increased number of parameters, k. The penalty factors for s2, AIand SIC are (T/T –  k), e(2k/T), anT(k/T), respectively. Thus, SIC hthe greatest penalty factor. 如题,谢谢~

2024-01-26 16:48 1 · 回答

NO.PZ2018122801000073 问题如下 Richard Frank, FRM, is running a regression mol to forecast in-sample tHe is concerneabout ta mining anover-fitting the tWhiof the following criteria provis the highest penalty factor baseon grees of freem? Mean squareerror (MSE) Unbiased mesquareerror (s2) Akaike information criterion (AI Schwarz information criterion (SI is correct. 考点 : Selecting Forecasting Mols 解析 : The Schwarz information criterion (SIhthe highest penalty factor. The mesquared error (MSE) es not penalize the regression mol baseon the increased number of parameters, k. The penalty factors for s2, AIand SIC are (T/T –  k), e(2k/T), anT(k/T), respectively. Thus, SIC hthe greatest penalty factor. 印象里只有AIC和BIC,知识点可能有遗漏,烦请老师说明下。谢谢!

2023-04-19 16:22 1 · 回答

NO.PZ2018122801000073

2022-03-02 12:52 1 · 回答