NO.PZ2016010802000067
问题如下:
The demand schedule in a perfectly competitive market is given by P = 93 – 1.5Q (for Q ≤ 62) and the long-run cost structure of each company is:
Total cost: 256 + 2Q + 4Q2
Average cost: 256/Q + 2 + 4Q
Marginal cost: 2 + 8Q
New companies will enter the market at any price greater than:
选项:
A.8.
B.66.
C.81.
解释:
B is correct.
The long-run competitive equilibrium occurs where MC = AC = P for each company. Equating MC and AC implies 2 + 8Q = 256/Q + 2 + 4Q.
Solving for Q gives Q = 8. Equating MC with price gives P = 2 + 8Q = 66. Any price above 66 yields an economic profit because P = MC > AC, so new companies will enter the market.
考点:完全竞争市场
解析:在完全竞争市场中,存在条件 MC = AC = P,
联立MC=AC: 2 + 8Q = 256/Q + 2 + 4Q, Q=8.,
解得: P = 2 + 8Q = 66。
注意到,之所以不用需求函数 P = 93 – 1.5Q 参与联立是因为这里给的是整个市场的需求函数,而非单个厂商的 。但是题目给定的MC,AC都是单个厂商的关系式,所以整个市场的需求函数与它们并不匹配,不能参与联立。
因為在MR=MC 的時候才會利潤最大化嘛我的理解是這個時候才會有新廠商進入因為有巨額利潤在這道題裡面我用MR=P
93-1.5Q=2+8Q Q=9.575 然后代入 得到MR=78.6375但是我在答案裡面找不到,可以問一下這是哪裡想錯了嗎?