开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

suzie · 2018年03月23日

问一道题:NO.PZ201702190300000306 第6小题 [ CFA II ]

* 问题详情,请 查看题干

美式期权 在t=1 行权时, p+的value 大于执行价格40, 为什么还是把put 的 value 当做0.2517去计算了?不是应该直接9.6*0.54+0*0.46/1.03 来计算么?


问题如下图:

    

选项:

A.

B.

C.

解释:



1 个答案

品职辅导员_小明 · 2018年03月26日

首先你犯了一个致命的错误,二叉树的计算都是从后往前推的,所谓美式期权,就是你要在每一期都要判断会不会行权,所以这个0.2517是从第二年折到第一年的value,然后又判断一次是否行权,然后继续往前折

  • 1

    回答
  • 0

    关注
  • 433

    浏览
相关问题

NO.PZ201702190300000306 问题如下 The value of the American-style put option on Beta Company shares is closest to: A.4.53. B.5.15. C.9.32. B is correct.Using the expectations approach, the risk-neutrprobability of up move isπ= [FV(1) - /(u - = (1.03 - 0.800)/(1.300 - 0.800) = 0.46.American-style put cexerciseearly. Time Step 1, for the up move, p+ is 0.2517 anthe put is out of the money anshoulnot exerciseearly (X S, 40 49.4). However, Time Step 1, p- is 8.4350 anthe put is in the money 9.60 (X - S = 40 - 30.40). So, the put is exerciseearly, anthe value of early exercise (9.60) replaces the value of not exercising early (8.4350) in the binomitree. The value of the put Time Step 0 is nowp = PV[πp+ + (1 - π)p-] = [1/(1.03)][0.46(0.2517) + 0.54(8.4350)] = 4.54.Following is a supplementary note regarng Exhibit 1.The values in Exhibit 1 are calculatefollows.Time Step 2:p++ = Max(0,X - u2S) = Max[0,40 - 1.3002(38)] = Max(0,40 - 64.22) = 0. p-+ = Max(0,X - u) = Max[0,40 - 1.300(0.800)(38)] = Max(0,40 - 39.52) = 0.48.p- - = Max(0,X - S) = Max[0,40 - 0.8002(38)] = Max(0,40 - 24.32)= 15.68.Time Step 1:p+ = PV[πp++ + (1 - π)p-+] = [1/(1.03)][0.46(0) + 0.54(0.48)] = 0.2517. p- = PV[πp-+ + (1 - π)p- -] = [1/(1.03)][0.46(0.48) + 0.54(15.68)]=8.4350.Time Step 0:p = PV[πp+ + (1 - π)p-] = [1/(1.03)][0.46(0.2517) + 0.54(9.6)] = 5.1454.中文解析本题考察的是计算美式看跌期权的价值,需要注意的是在t=1的节点,需要判断是否有必要提前行权。在本题中,在p- 的确定时,就需要考虑这个问题,如果在t=1时刻立即行权,p- 等于9.6,如果在t=2时刻行权,折现后求得的p- 为8.4350.两者取大,因此应该在t=1时刻行权,得到p- 等于9.6.然后再根据p- =9.6,p+ =0.2517折现到0时刻得到p0. P+和P-为什么不统一呢,就是折现就都折现,不折现就都不折现,怎么有的折现有的是直接算的?

2023-07-27 16:40 2 · 回答

NO.PZ201702190300000306 问题如下 The value of the American-style put option on Beta Company shares is closest to: A.4.53. B.5.15. C.9.32. B is correct.Using the expectations approach, the risk-neutrprobability of up move isπ= [FV(1) - /(u - = (1.03 - 0.800)/(1.300 - 0.800) = 0.46.American-style put cexerciseearly. Time Step 1, for the up move, p+ is 0.2517 anthe put is out of the money anshoulnot exerciseearly (X S, 40 49.4). However, Time Step 1, p- is 8.4350 anthe put is in the money 9.60 (X - S = 40 - 30.40). So, the put is exerciseearly, anthe value of early exercise (9.60) replaces the value of not exercising early (8.4350) in the binomitree. The value of the put Time Step 0 is nowp = PV[πp+ + (1 - π)p-] = [1/(1.03)][0.46(0.2517) + 0.54(8.4350)] = 4.54.Following is a supplementary note regarng Exhibit 1.The values in Exhibit 1 are calculatefollows.Time Step 2:p++ = Max(0,X - u2S) = Max[0,40 - 1.3002(38)] = Max(0,40 - 64.22) = 0. p-+ = Max(0,X - u) = Max[0,40 - 1.300(0.800)(38)] = Max(0,40 - 39.52) = 0.48.p- - = Max(0,X - S) = Max[0,40 - 0.8002(38)] = Max(0,40 - 24.32)= 15.68.Time Step 1:p+ = PV[πp++ + (1 - π)p-+] = [1/(1.03)][0.46(0) + 0.54(0.48)] = 0.2517. p- = PV[πp-+ + (1 - π)p- -] = [1/(1.03)][0.46(0.48) + 0.54(15.68)]=8.4350.Time Step 0:p = PV[πp+ + (1 - π)p-] = [1/(1.03)][0.46(0.2517) + 0.54(9.6)] = 5.1454.中文解析本题考察的是计算美式看跌期权的价值,需要注意的是在t=1的节点,需要判断是否有必要提前行权。在本题中,在p- 的确定时,就需要考虑这个问题,如果在t=1时刻立即行权,p- 等于9.6,如果在t=2时刻行权,折现后求得的p- 为8.4350.两者取大,因此应该在t=1时刻行权,得到p- 等于9.6.然后再根据p- =9.6,p+ =0.2517折现到0时刻得到p0. 如题

2022-08-09 15:05 2 · 回答

NO.PZ201702190300000306 上一小题是求欧式看涨期权的价值,就是直接得到time 2的C++,C+-和C--,然后就直接用rf往前折现两年变得出价值 这题为什么是先折现到time 1,然后再这些到0时刻?

2021-09-29 23:19 1 · 回答

5.15. 9.32. B is correct. Using the expectations approach, the risk-neutrprobability of up move is π= [FV(1) - /(u - = (1.03 - 0.800)/(1.300 - 0.800) = 0.46. American-style put cexerciseearly. Time Step 1, for the up move, p+ is 0.2517 anthe put is out of the money anshoulnot exerciseearly (X 40,p1+=0

2021-01-17 17:51 1 · 回答

5.15. 9.32. B is correct. Using the expectations approach, the risk-neutrprobability of up move is π= [FV(1) - /(u - = (1.03 - 0.800)/(1.300 - 0.800) = 0.46. American-style put cexerciseearly. Time Step 1, for the up move, p+ is 0.2517 anthe put is out of the money anshoulnot exerciseearly (X < S, 40 < 49.4). However, Time Step 1, p- is 8.4350 anthe put is in the money 9.60 (X - S = 40 - 30.40). So, the put is exerciseearly, anthe value of early exercise (9.60) replaces the value of not exercising early (8.4350) in the binomitree. The value of the put Time Step 0 is now p = PV[πp+ + (1 - π)p-] = [1/(1.03)][0.46(0.2517) + 0.54(9.60)] = 5.1454. Following is a supplementary note regarng Exhibit 1. The values in Exhibit 1 are calculatefollows. Time Step 2: p++ = Max(0,X - u2S) = Max[0,40 - 1.3002(38)] = Max(0,40 - 64.22) = 0. p-+ = Max(0,X - u) = Max[0,40 - 1.300(0.800)(38)] = Max(0,40 - 39.52) = 0.48. p- - = Max(0,X - S) = Max[0,40 - 0.8002(38)] = Max(0,40 - 24.32)= 15.68. Time Step 1: p+ = PV[πp++ + (1 - π)p-+] = [1/(1.03)][0.46(0) + 0.54(0.48)] = 0.2517. p- = PV[πp-+ + (1 - π)p- -] = [1/(1.03)][0.46(0.48) + 0.54(15.68)]=8.4350. Time Step 0: p = PV[πp+ + (1 - π)p-] = [1/(1.03)][0.46(0.2517) + 0.54(8.4350)] = 4.5346.请问既然已经确定在1时刻行权了,为什么在计算put value时还要加上0。2517呢,这个地方不太明白

2020-08-08 23:19 1 · 回答