经典题视频里面的答案是算出了两年的Cumulative PD (如图)
我可以理解经典题里面这个解释,但是总复习的视频里面是说:“我不管第一天怎么样,我就把第一天结束了997个人,当成分母其中有六个人干掉了,所以第二天的违约概率是6/997“
根据这个说法来算就是4/333=1.2% 选B
所以这两个解释好像对Marginal Default probablity这个概念有点冲突。想来这里问问老师是我哪里理解不对
如图所示
🌻🎀LINDA🎀🌻 · 2022年05月13日
经典题视频里面的答案是算出了两年的Cumulative PD (如图)
我可以理解经典题里面这个解释,但是总复习的视频里面是说:“我不管第一天怎么样,我就把第一天结束了997个人,当成分母其中有六个人干掉了,所以第二天的违约概率是6/997“
根据这个说法来算就是4/333=1.2% 选B
所以这两个解释好像对Marginal Default probablity这个概念有点冲突。想来这里问问老师是我哪里理解不对
如图所示
忘记贴题目本身了,这里不充不了了。。。。 抱歉。。麻烦老师打开 经典题有答案版第11页
DD仔_品职助教 · 2022年05月13日
嗨,从没放弃的小努力你好:
这里协会对于marginal PD的概念确实有点问题,主要因为原版书里选取了不同教材,出现了marginal PD和conditional PD混用的情况,有时还默认这俩概念一样。
同学请以下面的内容为准:
marginal PD是边际违约概率,是只看这一年,只有这一年时的违约概率
conditional PD是条件违约概率,比如说在前一年不违约的条件下,这年违约的概率
cumulative PD是累计违约概率,是这一段时间内的违约概率
marginal PD:第一年d1=3/1000;第二年d2=6/997;第三年d3=10/991
conditional PD:第一年不违约的条件下第2年违约的概率=(1-d1)d2=6/1000;前两年不违约的条件下第三年违约的概率=(1-d1)(1-d2)*d3=10/1000;
cumulative PD:第一年=d1=3/1000;第二年=d1+(1-d1)d2=9/1000,;第三年=d1+(1-d1)d2+(1-d1)(1-d2)*d3=19/1000
如果遇见是求一个期间的marginal PD,就用两个cumulative PD相减,就以经典题这道题的解答方法为准。
----------------------------------------------努力的时光都是限量版,加油!